Laser-induced Damage Threshold (LIDT) in Optical Components

Dr Helmut Kessler

What is Laser-induced Damage ?

Ü Laser-induced Damage (LID) is damage caused to an optical coating or substrate when irradiated by a Laser.

Ü As early as 1962 McClung and Hellwarth ('Giant Optical Pulsation from Ruby') reported that 'output light burned holes in the silvered surfaces' of their ruby rod.

Ü Since then, the power available from Laser has increased substantially and we are now regularly dealing with Petawatt lasers!

The Basics

- Ü The Laser-induced Damage Threshold (LIDT) of optical materials is determined mainly by the following:
 - Ü Beam size (the more power is concentrated in one spot the more likely the damage)
 - Ü The Beam shape (Gauss / Supergauss this will be examined in more detail later)
 - Ü The Beam quality (hot-spots)
 - Ü The coating / substrate materials (metals vs. dielectrics, coating and substrate quality)
 - Ü The environment (cleanroom vs. dusty environment)

LID in common substrate materials

Ü Commonly used optical substrate materials incur LID due to the following

- Ü Dielectric breakdown (Fused Silica, Diamond, Quartz, Sapphire)
- Ü Thermal absorption (LiNbO₃, BK7)

Material	LIDT @ 1064nm in J/cm ²		
Fused Silica	1.1 x 10 ⁷		
Sapphire (Al ₂ O ₃)	7 x 10 ⁶		
Diamond	6 x 10 ⁷		
LiNbO ₃	5 x 10 ⁴		
BK7	4 x 10 ⁵		

LID in optical coatings

Metal coatings predominantly damage as a result of thermal absorption

U Dielectric coatings generally show much lower absorption than metal coatings and defect-induced damage is more common. Ü Defects can be inclusions (dust particles) Ü The substrate surface can encourage irregular growth of coating layers, leading to defects Ü The coating parameters (deposition rate etc.) influence the quality of the coating.

How to scale LIDT

Ü For any given LIDT (LIDT(t_1)) at a pulse duration t_1 , the approximate LIDT (LIDT(t_2) at pulse duration t_2 is given by

LIDT $(t_2) = LIDT (t_1) * (t_2/t_1)^{1/2}$

Ü This rule works for pulse durations of approx. 1ns – 20ns.

Coating designs for high LIDT requirements

U In general, optical coatings made of 'single stacks', i.e. stacks of high- and low index coating materials of lambda/4 optical thickness, display the highest LIDT.

U The choice of optical coating materials (and the deposition parameters) are important.

Ü Mero et al (Phys Rev B71, 115109) have undertaken fundamental work to estimate the LIDT (critical fluence) of a material as a function of the pulse duration and material band gap. For Formula see next slide.

Ü Interestingly, they could not establish any relationship between LIDT and defects or impurities due to the manufacturing process. (confirmed by Stolz et al.)

 $F_{th} = (C_1 + C_2 E_q) \tau_p^{\kappa}$

F_{th}: critical fluence

E_g: material band gap

 τ_p : pulse duration

κ: material specific constant

 c_1 : empirical factor, -0.16+/-0.02 J/cm²fs^{- κ}

c₂: empirical factor, 0.074+/-0.004 J/cm²fs⁻ keV⁻¹

Material	n ₈₀₀ (refractive index at 800nm)	E ₀ (band gap energy)	К	Theoretical critical fluence in J/ cm2 for 15fs pulse
TiO ₂	2.39	3.3 eV	0.28+/-0.02	0.18
Ta ₂ O ₅	2.17	3.8 eV	0.33+/-0.02	0.30
HfO ₂	2.09	5.1 eV	0.30+/-0.01	0.49
AI_2O_3	1.65	6.5 eV	0.27+/-0.01	0.67
SiO ₂	1.5	8.3 eV	0.33+/-0.01	1.11

Source: Mero et al, Phys. Rev. B71, 115109 (2005)

Ü More recent work by Mangote et al (Optics Letters 37,9 1478, May 2012) looked into the relationship between the material's refractive index and its LIDT

- Ü Unfortunately, data was compiled for a 500fs pulse at 1030nm
- Ü The empirical law they found is:

 $LIDT = 12/n^2 J/cm^2$

Ü While the authors are unable to give a scientific explanation for this equation it highlights a significant implication for coating design.

Ü The LIDT appears to decrease by a power of two with increasing refractive index !!!

Ü 'Single Stack' coatings display a high LIDT and good Group Delay Dispersion (GDD).

Ü Spectral breadth is limited by ratio of refractive index between the 2 coating materials.

Ü 'Natural' limit on achievable breadth.

Performance shown under AOI of 45deg , p-POL

- Ü Stack 1 (n(H)/n(L)=1.365) is compatible with high power
- Ü Stack 2 (n(H)/n(L)=1.434) can only handle medium to low power
- Ü Bandwidth of at least 750-850nm is required by most customers
- Ü What can be done?

Solution 1: Combination of both stacks

Performance shown under AOI of 45deg, p-POL

Good and easy solution, BUT:

- **Ü** Potentially problematic under vacuum (stress can cause crazing of the coating, especially for larger substrates
- **Ü** Design can cause spikes in GDD
- Cannot handle spectral Supergauss beamprofiles well (Low LIDT) Ü

- Ü MPO's solution optimised design
- Ü High LIDT, vacuum compatible (even for large substrates), low GDD, can be tailored to customer requirements.

Performance shown under AOI of 45deg , p-POL

Any Questions ?

